atoti.Cube.query()#
- Cube.query(*measures, context={}, filter=None, include_empty_rows=False, include_totals=False, levels=(), mode='pretty', scenario='Base', timeout=datetime.timedelta(seconds=30), **kwargs)#
Query the cube to retrieve the value of the passed measures on the given levels.
In JupyterLab with the
atoti-jupyterlab
plugin installed, query results can be converted to interactive widgets with the Convert to Widget Below action available in the command palette or by right clicking on the representation of the returned Dataframe.- Parameters:
measures (BaseMeasure) – The measures to query.
filter (QueryFilter | None) –
The filtering condition.
Examples
>>> df = pd.DataFrame( ... columns=["Continent", "Country", "Currency", "Price"], ... data=[ ... ("Europe", "France", "EUR", 200.0), ... ("Europe", "Germany", "EUR", 150.0), ... ("Europe", "United Kingdom", "GBP", 120.0), ... ("America", "United states", "USD", 240.0), ... ("America", "Mexico", "MXN", 270.0), ... ], ... ) >>> table = session.read_pandas( ... df, ... keys=["Continent", "Country", "Currency"], ... table_name="Prices", ... ) >>> cube = session.create_cube(table) >>> del cube.hierarchies["Continent"] >>> del cube.hierarchies["Country"] >>> cube.hierarchies["Geography"] = [ ... table["Continent"], ... table["Country"], ... ] >>> cube.measures["American Price"] = tt.where( ... cube.levels["Continent"] == "America", ... cube.measures["Price.SUM"], ... ) >>> h, l, m = cube.hierarchies, cube.levels, cube.measures
Single equality test:
>>> cube.query( ... m["Price.SUM"], ... levels=[l["Country"]], ... filter=l["Continent"] == "Europe", ... ) Price.SUM Continent Country Europe France 200.00 Germany 150.00 United Kingdom 120.00
Combined equality test:
>>> cube.query( ... m["Price.SUM"], ... levels=[l["Country"], l["Currency"]], ... filter=( ... (l["Continent"] == "Europe") ... & (l["Currency"] == "EUR") ... ), ... ) Price.SUM Continent Country Currency Europe France EUR 200.00 Germany EUR 150.00
Hierarchy filter:
>>> cube.query( ... m["Price.SUM"], ... levels=[l["Country"]], ... filter=h["Geography"].isin( ... ("America",), ("Europe", "Germany") ... ), ... ) Price.SUM Continent Country America Mexico 270.00 United states 240.00 Europe Germany 150.00
Exclusion filter:
>>> cube.query( ... m["Price.SUM"], ... levels=[l["Country"], l["Currency"]], ... # Equivalent to `filter=(l["Currency"] != "GBP") & (l["Currency"] != "MXN")` ... filter=~l["Currency"].isin("GBP", "MXN"), ... ) Price.SUM Continent Country Currency America United states USD 240.00 Europe France EUR 200.00 Germany EUR 150.00
include_empty_rows (bool) –
Whether to keep the rows where all the requested measures have no value.
Example
>>> cube.query( ... m["American Price"], ... levels=[l["Continent"]], ... include_empty_rows=True, ... ) American Price Continent America 510.00 Europe
include_totals (bool) –
Whether to query the grand total and subtotals and keep them in the returned DataFrame. Totals can be useful but they make the DataFrame harder to work with since its index will have some empty values.
Example
>>> cube.query( ... m["Price.SUM"], ... levels=[l["Country"], l["Currency"]], ... include_totals=True, ... ) Price.SUM Continent Country Currency Total 980.00 America 510.00 Mexico 270.00 MXN 270.00 United states 240.00 USD 240.00 Europe 470.00 France 200.00 EUR 200.00 Germany 150.00 EUR 150.00 United Kingdom 120.00 GBP 120.00
levels (Collection[BaseLevel]) – The levels to split on. If
None
, the value of the measures at the top of the cube is returned.scenario (str) – The scenario to query.
timeout (timedelta) – The duration the query execution can take before being aborted.
mode (Literal['pretty', 'raw']) –
The query mode.
"pretty"
is best for queries returning small results:A
QueryResult
will be returned and its rows will be sorted according to the level order.
>>> cube.query( ... m["Price.SUM"], ... levels=[l["Continent"]], ... mode="pretty", ... ) Price.SUM Continent America 510.00 Europe 470.00
"raw"
is best for benchmarks or large exports:A faster and more efficient endpoint reducing the data transfer from Java to Python will be used.
A classic
pandas.DataFrame
will be returned.include_totals="True"
will not be allowed.The Convert to Widget Below action provided by the
atoti-jupyterlab
plugin will not be available.
>>> cube.query( ... m["Price.SUM"], ... levels=[l["Continent"]], ... mode="raw", ... ) Continent Price.SUM 0 Europe 470.0 1 America 510.0
context (Mapping[str, object]) –
Context values to use when executing the query.
Defaults to
atoti.Cube.shared_context
.
- Return type: