atoti.Cube.create_parameter_hierarchy_from_members()#
- Cube.create_parameter_hierarchy_from_members(name, members, *, data_type=None, index_measure_name=None)#
Create a single-level hierarchy with the given members.
It can be used as a parameter hierarchy in advanced analyzes.
- Parameters:
name (str) – The name of hierarchy and its single level.
members (Collection[ConstantValue]) – The members of the hierarchy.
data_type (DataType | None) – The type with which the members will be stored. Automatically inferred by default.
index_measure_name (str | None) – The name of the indexing measure to create for this hierarchy, if any.
Example
>>> df = pd.DataFrame( ... { ... "Seller": ["Seller_1", "Seller_2", "Seller_3"], ... "Prices": [ ... [2.5, 49.99, 3.0, 54.99], ... [2.6, 50.99, 2.8, 57.99], ... [2.99, 44.99, 3.6, 59.99], ... ], ... } ... ) >>> table = session.read_pandas(df, table_name="Seller prices") >>> cube = session.create_cube(table) >>> l, m = cube.levels, cube.measures >>> cube.create_parameter_hierarchy_from_members( ... "ProductID", ... ["aBk3", "ceJ4", "aBk5", "ceJ9"], ... index_measure_name="Product index", ... ) >>> m["Prices"] = tt.agg.single_value(table["Prices"]) >>> m["Product price"] = m["Prices"][m["Product index"]] >>> cube.query( ... m["Product price"], ... levels=[l["Seller"], l["ProductID"]], ... ) Product price Seller ProductID Seller_1 aBk3 2.50 aBk5 3.00 ceJ4 49.99 ceJ9 54.99 Seller_2 aBk3 2.60 aBk5 2.80 ceJ4 50.99 ceJ9 57.99 Seller_3 aBk3 2.99 aBk5 3.60 ceJ4 44.99 ceJ9 59.99