atoti.Measure.formatter#
- property Measure.formatter: str | None#
Formatter of the measure.
Note
The formatter only impacts how the measure is displayed, derived measures will still be computed from unformatted value. To round a measure, use
atoti.math.round()
instead.Example
>>> df = pd.DataFrame( ... columns=["Product", "Price", "Quantity"], ... data=[ ... ("phone", 559.99, 2), ... ("headset", 79.99, 4), ... ("watch", 249.99, 3), ... ], ... ) >>> table = session.read_pandas(df, keys={"Product"}, table_name="Example") >>> cube = session.create_cube(table) >>> h, l, m = cube.hierarchies, cube.levels, cube.measures >>> m["contributors.COUNT"].formatter 'INT[#,###]' >>> m["contributors.COUNT"].formatter = "INT[count: #,###]" >>> m["contributors.COUNT"].formatter 'INT[count: #,###]' >>> m["Price.SUM"].formatter 'DOUBLE[#,###.00]' >>> m["Price.SUM"].formatter = "DOUBLE[$#,##0.00]" # Add $ symbol >>> m["Ratio of sales"] = m["Price.SUM"] / tt.total( ... m["Price.SUM"], h["Product"] ... ) >>> m["Ratio of sales"].formatter 'DOUBLE[#,###.00]' >>> m["Ratio of sales"].formatter = "DOUBLE[0.00%]" # Percentage >>> m["Turnover in dollars"] = tt.agg.sum( ... table["Price"] * table["Quantity"], ... ) >>> m["Turnover in dollars"].formatter 'DOUBLE[#,###.00]' >>> m["Turnover in dollars"].formatter = "DOUBLE[#,###]" # Without decimals >>> cube.query( ... m["contributors.COUNT"], ... m["Price.SUM"], ... m["Ratio of sales"], ... m["Turnover in dollars"], ... levels=[l["Product"]], ... ) contributors.COUNT Price.SUM Ratio of sales Turnover in dollars Product headset count: 1 $79.99 8.99% 320 phone count: 1 $559.99 62.92% 1,120 watch count: 1 $249.99 28.09% 750
The spec for the pattern between the
DATE
orDOUBLE
’s brackets is the one from Microsoft Analysis Services.There is an extra formatter for array measures:
ARRAY['|';1:3]
where|
is the separator used to join the elements of the1:3
slice.