atoti.Cube.create_date_hierarchy()#
- Cube.create_date_hierarchy(name, *, column, levels={'Year': 'y', 'Month': 'M', 'Day': 'd'})#
Create a multilevel date hierarchy based on a date column.
The new levels are created by matching a date pattern. Here is a non-exhaustive list of patterns that can be used:
Pattern
Description
Type
Examples
y
Year
Integer
2001, 2005, 2020
yyyy
4-digits year
String
"2001", "2005", "2020"
M
Month of the year (1 based)
Integer
1, 5, 12
MM
2-digits month
String
"01", "05", "12"
d
Day of the month
Integer
1, 15, 30
dd
2-digits day of the month
String
"01", "15", "30"
w
Week number
Integer
1, 12, 51
Q
Quarter
Integer
1, 2, 3, 4
QQQ
Quarter prefixed with Q
String
"Q1", "Q2", "Q3", "Q4"
H
Hour of day (0-23)
Integer
0, 12, 23
HH
2-digits hour of day
String
"00", "12", "23"
m
Minute of hour
Integer
0, 30, 59
mm
2-digits minute of hour
String
"00", "30", "59"
s
Second of minute
Integer
0, 5, 55
ss
2-digits second of minute
String
"00", "05", "55"
- Parameters:
- Return type:
None
Example
>>> from datetime import date >>> df = pd.DataFrame( ... columns=["Date", "Quantity"], ... data=[ ... (date(2020, 1, 10), 150.0), ... (date(2020, 1, 20), 240.0), ... (date(2019, 3, 17), 270.0), ... (date(2019, 12, 12), 200.0), ... ], ... ) >>> table = session.read_pandas(df, keys={"Date"}, table_name="Example") >>> cube = session.create_cube(table) >>> l, m = cube.levels, cube.measures >>> cube.create_date_hierarchy("Date parts", column=table["Date"]) >>> cube.query( ... m["Quantity.SUM"], ... include_totals=True, ... levels=[l["Year"], l["Month"], l["Day"]], ... ) Quantity.SUM Year Month Day Total 860.00 2019 470.00 3 270.00 17 270.00 12 200.00 12 200.00 2020 390.00 1 390.00 10 150.00 20 240.00
The full date can also be added back as the last level of the hierarchy:
>>> h = cube.hierarchies >>> h["Date parts"] = {**h["Date parts"], "Date": table["Date"]} >>> cube.query( ... m["Quantity.SUM"], ... include_totals=True, ... levels=[l["Date parts", "Date"]], ... ) Quantity.SUM Year Month Day Date Total 860.00 2019 470.00 3 270.00 17 270.00 2019-03-17 270.00 12 200.00 12 200.00 2019-12-12 200.00 2020 390.00 1 390.00 10 150.00 2020-01-10 150.00 20 240.00 2020-01-20 240.00
Data inserted into the table after the hierarchy creation will be automatically hierarchized:
>>> table += (date(2021, 8, 30), 180.0) >>> cube.query( ... m["Quantity.SUM"], ... include_totals=True, ... levels=[l["Date parts", "Date"]], ... filter=l["Year"] == "2021", ... ) Quantity.SUM Year Month Day Date Total 180.00 2021 180.00 8 180.00 30 180.00 2021-08-30 180.00