atoti.math.log()#
- atoti.math.log(measure, /)#
Return a measure equal to the natural logarithm (base e) of the passed measure.
Example
>>> df = pd.DataFrame( ... columns=["City", "A", "B", "C", "D"], ... data=[ ... ("Berlin", 15.0, 10.0, 10.1, 1.0), ... ("London", 24.0, 16.0, 20.5, 3.14), ... ("New York", -27.0, 15.0, 30.7, 10.0), ... ("Paris", 0.0, 0.0, 0.0, 0.0), ... ], ... ) >>> table = session.read_pandas(df, keys={"City"}, table_name="Math") >>> cube = session.create_cube(table) >>> l, m = cube.levels, cube.measures >>> m["log(D)"] = tt.math.log(m["D.SUM"]) >>> cube.query(m["D.SUM"], m["log(D)"], levels=[l["City"]]) D.SUM log(D) City Berlin 1.00 .00 London 3.14 1.14 New York 10.00 2.30 Paris .00 -∞
- Parameters:
measure (VariableMeasureConvertible)
- Return type:
MeasureDescription