atoti.agg.single_value()#
- atoti.agg.single_value(operand: Column, /) MeasureDescription #
- atoti.agg.single_value(operand: VariableMeasureConvertible, /, *, scope: CumulativeScope | SiblingsScope | OriginScope) MeasureDescription
Return a measure equal to the value aggregation of the operand across the specified scope.
If the value is the same for all members of the level the operand is being aggregated on, it will be propagated to the next level.
None
values are ignored: they will not prevent the propagation.- Parameters:
operand – The measure or table column to aggregate.
scope – The
aggregation scope
.
Example
>>> df = pd.DataFrame( ... columns=["Continent", "Country", "City", "Price"], ... data=[ ... ("Europe", "France", "Paris", 200.0), ... ("Europe", "France", "Lyon", 200.0), ... ("Europe", "UK", "London", 200.0), ... ("Europe", "UK", "Manchester", 150.0), ... ("Europe", "France", "Bordeaux", None), ... ], ... ) >>> table = session.read_pandas(df, keys={"Continent", "Country", "City"}, table_name="Example") >>> cube = session.create_cube(table) >>> h, l, m = cube.hierarchies, cube.levels, cube.measures >>> geography_level_names = ["Continent", "Country", "City"] >>> h["Geography"] = [table[name] for name in geography_level_names] >>> for name in geography_level_names: ... del l[name, name] >>> m["Price.VALUE"] = tt.agg.single_value(table["Price"]) >>> cube.query( ... m["Price.VALUE"], ... levels=[l["City"]], ... include_empty_rows=True, ... include_totals=True, ... ) Price.VALUE Continent Country City Total Europe France 200.00 Bordeaux Lyon 200.00 Paris 200.00 UK London 200.00 Manchester 150.00
The City level is the most granular level so the members have the same value as in the input dataframe (including
None
for Bordeaux).All the cities in France have the same price or
None
so the value is propagated to the Country level. The values in the UK cities are different so Price.VALUE isNone
.The cities in Europe have different values so the Price.VALUE is
None
at the Continent level.