atoti.shift()#
- atoti.shift(measure, on, /, *, offset=1, partitioning=None)#
Return a measure equal to the passed measure shifted to another member of the hierarchy.
- Parameters:
- Return type:
MeasureDescription
Example
>>> df = pd.DataFrame( ... columns=["Country", "City", "Price"], ... data=[ ... ("France", "Bordeaux", 1), ... ("France", "Lyon", 2), ... ("France", "Paris", 3), ... ("Germany", "Berlin", 4), ... ("Germany", "Frankfurt", 5), ... ("Germany", "Munich", 6), ... ], ... ) >>> table = session.read_pandas( ... df, ... table_name="Shift example", ... ) >>> cube = session.create_cube(table) >>> h, l, m = cube.hierarchies, cube.levels, cube.measures >>> m["Shifted Price.SUM"] = tt.shift(m["Price.SUM"], h["City"], offset=2) >>> cube.query( ... m["Price.SUM"], ... m["Shifted Price.SUM"], ... levels=[l["City"]], ... include_totals=True, ... ) Price.SUM Shifted Price.SUM City Total 21 Berlin 4 5 Bordeaux 1 2 Frankfurt 5 6 Lyon 2 3 Munich 6 Paris 3
>>> h["Location"] = [l["Country"], l["City"]] >>> m["Shifted Price.SUM"] = tt.shift(m["Price.SUM"], h["Location"], offset=1) >>> m["Shifted Price.SUM partitioned by Country"] = tt.shift( ... m["Price.SUM"], ... h["Location"], ... offset=1, ... partitioning=l["Location", "Country"], ... ) >>> cube.query( ... m["Price.SUM"], ... m["Shifted Price.SUM"], ... m["Shifted Price.SUM partitioned by Country"], ... levels=[ ... l["Shift example", "Location", "Country"], ... l["Shift example", "Location", "City"], ... ], ... include_totals=True, ... ) Price.SUM Shifted Price.SUM Shifted Price.SUM partitioned by Country Country City Total 21 France 6 15 Bordeaux 1 2 2 Lyon 2 3 3 Paris 3 4 Germany 15 Berlin 4 5 5 Frankfurt 5 6 6 Munich 6