atoti.function.where module#
- atoti.where(condition: ConditionOperation, true_value: _OperationLike, false_value: Optional[_OperationLike] = None, /) TernaryOperation #
- atoti.where(condition: Union[BooleanMeasure, Condition, Measure], true_value: MeasureLike, false_value: Optional[MeasureLike] = None, /) MeasureDescription
Return a conditional measure.
This function is like an if-then-else statement:
Where the condition is
True
, the new measure will be equal to true_value.Where the condition is
False
, the new measure will be equal to false_value.
If false_value is not
None
, true_value and false_value must either be both numerical, both boolean or both objects.If one of the values compared in the condition is
None
, the condition will be consideredFalse
.Different types of conditions are supported:
Measures compared to anything measure-like:
m["Test"] == 20
Levels compared to levels, (if the level is not expressed, it is considered
None
):l["source"] == l["destination"]
Levels compared to literals of the same type:
l["city"] == "Paris" l["date"] > datetime.date(2020,1,1) l["age"] <= 18
A conjunction or disjunction of conditions using the
&
operator or|
operator:(m["Test"] == 20) & (l["city"] == "Paris") (l["Country"] == "USA") | (l["Currency"] == "USD")
- Parameters
condition (
Union
[BooleanMeasure
,ConditionOperation
,Condition
,Measure
]) – The condition to evaluate.true_value (
Union
[date
,datetime
,int
,float
,str
,Iterable
[int
],Iterable
[float
],MeasureDescription
,MeasureConvertible
,Column
,Operation
]) – The measure to propagate where the condition isTrue
.false_value (
Union
[date
,datetime
,int
,float
,str
,Iterable
[int
],Iterable
[float
],MeasureDescription
,MeasureConvertible
,Column
,Operation
,None
]) – The measure to propagate where the condition isFalse
.
Example
>>> df = pd.DataFrame( ... columns=["Id", "City", "Value"], ... data=[ ... (0, "Paris", 1.0), ... (1, "Paris", 2.0), ... (2, "London", 3.0), ... (3, "London", 4.0), ... (4, "Paris", 5.0), ... ], ... ) >>> table = session.read_pandas(df, keys=["Id"], table_name="filter example") >>> cube = session.create_cube(table) >>> l, m = cube.levels, cube.measures >>> m["Paris value"] = tt.where(l["City"] == "Paris", m["Value.SUM"], 0) >>> cube.query(m["Paris value"], levels=[l["City"]]) Paris value City London .00 Paris 8.00
See also
- Return type
Union
[MeasureDescription
,TernaryOperation
]