atoti.math package

Module contents

Measures can be combined with mathematical operators.

Several native Python operators are supported:

  • The classic +, - and * operators

    >>> df = pd.DataFrame(
    ...     columns=["City", "A", "B", "C", "D"],
    ...     data=[
    ...         ("Berlin", 15.0, 10.0, 10.1, 1.0),
    ...         ("London", 24.0, 16.0, 20.5, 3.14),
    ...         ("New York", -27.0, 15.0, 30.7, 10.0),
    ...     ],
    ... )
    >>> table = session.read_pandas(df, keys=["City"], table_name="Math")
    >>> cube = session.create_cube(table)
    >>> l, m = cube.levels, cube.measures
    >>> m["Sum"] = m["A.SUM"] + m["B.SUM"]
    >>> m["Substract"] = m["A.SUM"] - m["B.SUM"]
    >>> m["Multiply"] = m["A.SUM"] * m["B.SUM"]
    >>> cube.query(
    ...     m["A.SUM"],
    ...     m["B.SUM"],
    ...     m["Sum"],
    ...     m["Substract"],
    ...     m["Multiply"],
    ...     levels=[l["City"]],
    ... )
               A.SUM  B.SUM     Sum Substract Multiply
    City
    Berlin     15.00  10.00   25.00      5.00   150.00
    London     24.00  16.00   40.00      8.00   384.00
    New York  -27.00  15.00  -12.00    -42.00  -405.00
    
  • The float division / and integer division //

    >>> m["Float division"] = m["A.SUM"] / m["B.SUM"]
    >>> m["Int division"] = m["A.SUM"] // m["B.SUM"]
    >>> cube.query(
    ...     m["A.SUM"],
    ...     m["B.SUM"],
    ...     m["Float division"],
    ...     m["Int division"],
    ...     levels=[l["City"]],
    ... )
               A.SUM  B.SUM Float division Int division
    City
    Berlin     15.00  10.00           1.50         1.00
    London     24.00  16.00           1.50         1.00
    New York  -27.00  15.00          -1.80        -2.00
    
  • The exponentiation **

    >>> m["a²"] = m["A.SUM"] ** 2
    >>> cube.query(m["A.SUM"], m["a²"], levels=[l["City"]])
               A.SUM      a²
    City
    Berlin     15.00  225.00
    London     24.00  576.00
    New York  -27.00  729.00
    
  • The modulo %

    >>> m["Modulo"] = m["A.SUM"] % m["B.SUM"]
    >>> cube.query(m["A.SUM"], m["B.SUM"], m["Modulo"], levels=[l["City"]])
               A.SUM  B.SUM Modulo
    City
    Berlin     15.00  10.00   5.00
    London     24.00  16.00   8.00
    New York  -27.00  15.00   3.00
    
atoti.math.abs(measure)

Return a measure equal to the absolute value of the passed measure.

Example

>>> m["|A|"] = tt.math.abs(m["A.SUM"])
>>> cube.query(m["A.SUM"], m["|A|"], levels=[l["City"]])
           A.SUM    |A|
City
Berlin     15.00  15.00
London     24.00  24.00
New York  -27.00  27.00
Return type

MeasureDescription

atoti.math.ceil(measure)

Return a measure equal to the smallest integer that is >= to the passed measure.

Example

>>> m["⌈C⌉"] = tt.math.ceil(m["C.SUM"])
>>> cube.query(m["C.SUM"], m["⌈C⌉"], levels=[l["City"]])
          C.SUM ⌈C⌉
City
Berlin    10.10  11
London    20.50  21
New York  30.70  31
Return type

MeasureDescription

atoti.math.cos(measure)

Return a measure equal to the cosine of the passed measure in radians.

Example

>>> m["cos(D)"] = tt.math.cos(m["D.SUM"])
>>> cube.query(m["D.SUM"], m["cos(D)"], levels=[l["City"]])
          D.SUM cos(D)
City
Berlin     1.00    .54
London     3.14  -1.00
New York  10.00   -.84
Return type

MeasureDescription

atoti.math.erf(measure)

Return the error function of the input measure.

This can be used to compute traditional statistical measures such as the cumulative standard normal distribution.

For more information read:

Example

>>> m["erf"] = tt.math.erf(m["D.SUM"])
>>> m["erf"].formatter = "DOUBLE[#,##0.000000]"
>>> cube.query(m["D.SUM"], m["erf"], levels=[l["City"]])
          D.SUM       erf
City
Berlin     1.00  0.842701
London     3.14  0.999991
New York  10.00  1.000000
Return type

MeasureDescription

atoti.math.erfc(measure)

Return the complementary error function of the input measure.

This is the complementary of atoti.math.erf(). It is defined as 1.0 - erf. It can be used for large values of x where a subtraction from one would cause a loss of significance.

Example

>>> m["erfc"] = tt.math.erfc(m["D.SUM"])
>>> m["1-erf"] = 1 - tt.math.erf(m["D.SUM"])
>>> m["erfc"].formatter = "DOUBLE[#.00E]"
>>> m["1-erf"].formatter = "DOUBLE[#.00E]"
>>> cube.query(m["D.SUM"], m["erfc"], m["1-erf"], levels=[l["City"]])
          D.SUM                    erfc                1-erf
City
Berlin     1.00     0.15729920705028488  0.15729920705028488
London     3.14    8.969565553264981E-6   8.9695655532962E-6
New York  10.00  2.0884875837625685E-45                  0.0
Return type

MeasureDescription

atoti.math.exp(measure)

Return a measure equal to the exponential value of the passed measure.

Example

>>> m["exp(D)"] = tt.math.exp(m["D.SUM"])
>>> cube.query(m["D.SUM"], m["exp(D)"], levels=[l["City"]])
          D.SUM     exp(D)
City
Berlin     1.00       2.72
London     3.14      23.10
New York  10.00  22,026.47
Return type

MeasureDescription

atoti.math.floor(measure)

Return a measure equal to the largest integer <= to the passed measure.

Example

>>> m["⌊C⌋"] = tt.math.floor(m["C.SUM"])
>>> cube.query(m["C.SUM"], m["⌊C⌋"], levels=[l["City"]])
          C.SUM ⌊C⌋
City
Berlin    10.10  10
London    20.50  20
New York  30.70  30
Return type

MeasureDescription

atoti.math.log(measure)

Return a measure equal to the natural logarithm (base e) of the passed measure.

Example

>>> m["log(D)"] = tt.math.log(m["D.SUM"])
>>> cube.query(m["D.SUM"], m["log(D)"], levels=[l["City"]])
          D.SUM log(D)
City
Berlin     1.00    .00
London     3.14   1.14
New York  10.00   2.30
Return type

MeasureDescription

atoti.math.log10(measure)

Return a measure equal to the base 10 logarithm of the passed measure.

Example

>>> m["log10(D)"] = tt.math.log10(m["D.SUM"])
>>> cube.query(m["D.SUM"], m["log10(D)"], levels=[l["City"]])
          D.SUM log10(D)
City
Berlin     1.00      .00
London     3.14      .50
New York  10.00     1.00
Return type

MeasureDescription

atoti.math.max(*measures)

Return a measure equal to the maximum of the passed arguments.

Example

>>> m["max"] = tt.math.max(m["A.SUM"], m["B.SUM"])
>>> cube.query(m["A.SUM"], m["B.SUM"], m["max"], levels=[l["City"]])
           A.SUM  B.SUM    max
City
Berlin     15.00  10.00  15.00
London     24.00  16.00  24.00
New York  -27.00  15.00  15.00
Return type

MeasureDescription

atoti.math.min(*measures)

Return a measure equal to the minimum of the passed arguments.

Example

>>> m["min"] = tt.math.min(m["A.SUM"], m["B.SUM"])
>>> cube.query(m["A.SUM"], m["B.SUM"], m["min"], levels=[l["City"]])
           A.SUM  B.SUM     min
City
Berlin     15.00  10.00   10.00
London     24.00  16.00   16.00
New York  -27.00  15.00  -27.00
Return type

MeasureDescription

atoti.math.round(measure)

Return a measure equal to the closest integer to the passed measure.

Note

To change how a measure is displayed, use a formatter instead.

Example

>>> m["round(C)"] = tt.math.round(m["C.SUM"])
>>> cube.query(m["C.SUM"], m["round(C)"], levels=[l["City"]])
          C.SUM round(C)
City
Berlin    10.10       10
London    20.50       21
New York  30.70       31
Return type

MeasureDescription

atoti.math.sin(measure)

Return a measure equal to the sine of the passed measure in radians.

Example

>>> m["sin(D)"] = tt.math.sin(m["D.SUM"])
>>> cube.query(m["D.SUM"], m["sin(D)"], levels=[l["City"]])
          D.SUM sin(D)
City
Berlin     1.00    .84
London     3.14    .00
New York  10.00   -.54
Return type

MeasureDescription

atoti.math.sqrt(measure)

Return a measure equal to the square root of the passed measure.

Example

>>> m["√B"] = tt.math.sqrt(m["B.SUM"])
>>> cube.query(m["B.SUM"], m["√B"], levels=[l["City"]])
          B.SUM    √B
City
Berlin    10.00  3.16
London    16.00  4.00
New York  15.00  3.87

MeasureDescription

Return type

MeasureDescription

atoti.math.tan(measure)

Return a measure equal to the tangent of the passed measure in radians.

Example

>>> m["tan(D)"] = tt.math.tan(m["D.SUM"])
>>> cube.query(m["D.SUM"], m["tan(D)"], levels=[l["City"]])
          D.SUM tan(D)
City
Berlin     1.00   1.56
London     3.14   -.00
New York  10.00    .65

MeasureDescription

Return type

MeasureDescription