atoti.experimental.distributed.session module¶
-
class
atoti.experimental.distributed.session.
DistributedSession
(name, *, config, **kwargs)¶ Holds a connection to the Java gateway.
-
create_cube
(name)¶ Create a distributed cube.
- Parameters
name (
str
) – The name of the created cube.- Return type
-
property
cubes
¶ Cubes of the session.
- Return type
-
endpoint
(route, *, method='GET')¶ Create a custom endpoint at
f"{session.url}/atoti/pyapi/{route}"
.This is useful to reuse atoti’s built-in server instead of adding a FastAPI or Flask server to the project. This way, when deploying the project in a container or a VM, only one port (the one of the atoti server) can be exposed instead of two. Since custom endpoints are exposed by atoti’s server, they automatically inherit from the https and authentication setup that have been defined in
create_config()
.The decorated function must take three parameters with types
User
,HttpRequest
, andSession
and return a response body as a Python data structure that can be converted to JSON.- Parameters
route (
str
) –The path suffix after
/atoti/pyapi/
. For instance, ifcustom/search
is passed, a request to/atoti/pyapi/custom/search?query=test#results
will match. The route should not contain the query (?
) or fragment (#
).Path parameters can be configured by wrapping their name in curly braces in the route.
method (
Literal
[‘POST’, ‘GET’, ‘PUT’, ‘DELETE’]) – The HTTP method the request must be using to trigger this endpoint.DELETE
,POST
, andPUT
requests can have a body but it must be JSON.
Examples:
@session.endpoint("simple_get") def callback(request: HttpRequest, user: User, session: Session): return "something that will be in response.data" @session.endpoint(f"simple_post/{store_name}", method="POST") def callback(request: HttpRequest, user: User, session: Session): return request.path_parameters.store_name
- Return type
-
property
excel_url
¶ URL of the Excel endpoint.
To connect to the session in Excel, create a new connection to an Analysis Services. Use this URL for the server field and choose to connect with “User Name and Password”:
Without authentication, leave these fields blank.
With Basic authentication, fill them with your username and password.
Other authentication types (such as Auth0) are not supported by Excel.
- Return type
-
explain_mdx_query
(mdx, *, timeout=30)¶ Run the query but return an explanation of how the query was executed instead of its result.
See also
query_mdx()
for the roles of the parameters.- Return type
QueryAnalysis
- Returns
An explanation containing a summary, global timings, and the query plan with all the retrievals.
-
export_translations_template
(path)¶ Export a template containing all translatable values in the session’s cubes.
-
property
port
¶ Port on which the session is exposed.
Can be set in
SessionConfiguration
.- Return type
-
query_mdx
(mdx, *, keep_totals=False, timeout=30)¶ Execute an MDX query and return its result as a pandas DataFrame.
- Parameters
mdx (
str
) – The MDXSELECT
query to execute. Regardless of the axes on which levels and measures appear in the MDX, the returned DataFrame will have all levels on rows and measures on columns.keep_totals (
bool
) – Whether the resulting DataFrame should contain, if they are present in the query result, the grand total and subtotals. Totals can be useful but they make the DataFrame harder to work with since its index will have some empty values.timeout (
int
) – The query timeout in seconds.
Example
>>> from datetime import date >>> df = pd.DataFrame( ... columns=["Country", "Date", "Price"], ... data=[ ... ("China", date(2020, 3, 3), 410.0), ... ("China", date(2020, 4, 4), 350.0), ... ("France", date(2020, 1, 1), 480.0), ... ("France", date(2020, 2, 2), 500.0), ... ("France", date(2020, 3, 3), 400.0), ... ("France", date(2020, 4, 4), 420.0), ... ("India", date(2020, 1, 1), 360.0), ... ("India", date(2020, 2, 2), 400.0), ... ("UK", date(2020, 2, 2), 960.0), ... ], ... ) >>> store = session.read_pandas( ... df, keys=["Country", "Date"], store_name="Prices" ... ) >>> _ = session.create_cube(store)
This MDX:
>>> mdx = ( ... "SELECT" ... " NON EMPTY Hierarchize(" ... " DrilldownLevel(" ... " [Prices].[Country].[ALL].[AllMember]" ... " )" ... " ) ON ROWS," ... " NON EMPTY Crossjoin(" ... " [Measures].[Price.SUM]," ... " Hierarchize(" ... " DrilldownLevel(" ... " [Prices].[Date].[ALL].[AllMember]" ... " )" ... " )" ... " ) ON COLUMNS" ... " FROM [Prices]" ... )
would display this pivot table:
Country
Price.sum
Total
2020-01-01
2020-02-02
2020-03-03
2020-04-04
Total
2,280.00
840.00
1,860.00
810.00
770.00
China
760.00
410.00
350.00
France
1,800.00
480.00
500.00
400.00
420.00
India
760.00
360.00
400.00
UK
960.00
960.00
but will return this DataFrame:
>>> session.query_mdx(mdx).sort_index() Price.SUM Date Country 2020-01-01 France 480.0 India 360.0 2020-02-02 France 500.0 India 400.0 UK 960.0 2020-03-03 China 410.0 France 400.0 2020-04-04 China 350.0 France 420.0
- Return type
-
visualize
(name=None)¶ Display an atoti widget to explore the session interactively.
Note
This method requires the
atoti-jupyterlab
plugin.The widget state will be stored in the cell metadata. This state should not have to be edited but, if desired, it can be found in JupyterLab by opening the “Notebook tools” sidebar and expanding the the “Advanced Tools” section.
-