atoti.experimental.distributed.cube module¶
-
class
atoti.experimental.distributed.cube.
DistributedCube
(java_api, name, session)¶ Cube of a distributed session.
-
property
aggregates_cache
¶ Aggregates cache of the cube.
- Return type
-
explain_query
(*measures, condition=None, include_totals=False, levels=None, scenario='Base', timeout=30)¶ Run the query but return an explanation of how the query was executed instead of its result.
See also
query()
for the roles of the parameters.- Return type
QueryAnalysis
- Returns
An explanation containing a summary, global timings, and the query plan with all the retrievals.
-
property
hierarchies
¶ Hierarchies of the cube.
- Return type
~_LocalHierarchies
-
property
levels
¶ Levels of the cube.
- Return type
~_Levels
-
property
measures
¶ Measures of the cube.
- Return type
~_LocalMeasures
-
query
(*measures, condition=None, include_totals=False, levels=None, mode='pretty', scenario='Base', timeout=30)¶ Query the cube to retrieve the value of the passed measures on the given levels.
In JupyterLab with the
atoti-jupyterlab
plugin installed, query results can be converted to interactive widgets with the Convert to Widget Below action available in the command palette or by right clicking on the representation of the returned Dataframe.- Parameters
measures (
Union
[NamedMeasure
,QueryMeasure
]) – The measures to query. IfNone
, all the measures are queried.condition (
Union
[LevelCondition
,MultiCondition
,LevelIsInCondition
,HierarchyIsInCondition
,None
]) –The filtering condition. Only conditions on level equality with a string are supported.
Examples
>>> df = pd.DataFrame( ... columns=["Continent", "Country", "Currency", "Price"], ... data=[ ... ("Europe", "France", "EUR", 200.0), ... ("Europe", "Germany", "EUR", 150.0), ... ("Europe", "United Kingdom", "GBP", 120.0), ... ("America", "United states", "USD", 240.0), ... ("America", "Mexico", "MXN", 270.0), ... ], ... ) >>> store = session.read_pandas( ... df, ... keys=["Continent", "Country", "Currency"], ... store_name="Prices", ... ) >>> cube = session.create_cube(store) >>> del cube.hierarchies["Continent"] >>> del cube.hierarchies["Country"] >>> cube.hierarchies["Geography"] = [ ... store["Continent"], ... store["Country"], ... ] >>> h, l, m = cube.hierarchies, cube.levels, cube.measures >>> cube.query( ... m["Price.SUM"], ... levels=[l["Country"]], ... condition=l["Continent"] == "Europe", ... ) Price.SUM Continent Country Europe France 200.00 Germany 150.00 United Kingdom 120.00 >>> cube.query( ... m["Price.SUM"], ... levels=[l["Country"], l["Currency"]], ... condition=( ... (l["Continent"] == "Europe") ... & (l["Currency"] == "EUR") ... ), ... ) Price.SUM Continent Country Currency Europe France EUR 200.00 Germany EUR 150.00 >>> cube.query( ... m["Price.SUM"], ... levels=[l["Country"]], ... condition=h["Geography"].isin( ... ("America",), ("Europe", "Germany") ... ), ... ) Price.SUM Continent Country America Mexico 270.00 United states 240.00 Europe Germany 150.00
include_totals (
bool
) –Whether the returned DataFrame should include the grand total and subtotals. Totals can be useful but they make the DataFrame harder to work with since its index will have some empty values.
Example
>>> cube.query( ... m["Price.SUM"], ... levels=[l["Country"], l["Currency"]], ... include_totals=True, ... ) Price.SUM Continent Country Currency Total 980.00 America 510.00 Mexico 270.00 MXN 270.00 United states 240.00 USD 240.00 Europe 470.00 France 200.00 EUR 200.00 Germany 150.00 EUR 150.00 United Kingdom 120.00 GBP 120.00
levels (
Union
[~_Level,Sequence
[~_Level],None
]) – The levels to split on. IfNone
, the value of the measures at the top of the cube is returned.scenario (
str
) – The scenario to query.timeout (
int
) – The query timeout in seconds.mode (
Literal
[‘pretty’, ‘raw’]) –The query mode.
"pretty"
is best for queries returning small results:A
QueryResult
will be returned and its rows will be sorted according to the level comparators.
Example:
>>> cube.query( ... m["Price.SUM"], ... levels=[l["Continent"]], ... mode="pretty", ... ) Price.SUM Continent America 510.00 Europe 470.00
"raw"
is best for benchmarks or large exports:
A faster and more efficient endpoint reducing the data transfer from Java to Python will be used.
A classic
pandas.DataFrame
will be returned.include_totals="True"
will not be allowed.The Convert to Widget Below action provided by the
atoti-jupyterlab
plugin will not be available.
Example:
>>> cube.query( ... m["Price.SUM"], ... levels=[l["Continent"]], ... mode="raw", ... ) Continent Price.SUM 0 Europe 470.0 1 America 510.0
- Return type
Union
[QueryResult
,DataFrame
]
-
property