atoti.measure module#
- class atoti.Measure#
A measure is a mostly-numeric data value, computed on demand for aggregation purposes.
Measures can be compared to other objects, such as a constant, a
atoti.Level
, or another measure. The returned measure represents the outcome of the comparison and this measure can be used as a condition. If the measure’s value isNone
when evaluating a condition, the returned value will beFalse
.Example
>>> df = pd.DataFrame( ... columns=["Id", "Value", "Threshold"], ... data=[ ... (0, 1.0, 5.0), ... (1, 2.0, None), ... (2, 3.0, 3.0), ... (3, 4.0, None), ... (4, 5.0, 1.0), ... ], ... ) >>> table = session.read_pandas(df, keys=["Id"], table_name="Measure example") >>> cube = session.create_cube(table) >>> l, m = cube.levels, cube.measures >>> m["Condition"] = m["Value.SUM"] > m["Threshold.SUM"] >>> cube.query(m["Condition"], levels=[l["Id"]]) Condition Id 0 False 1 False 2 False 3 False 4 True
- property data_type: Literal['boolean', 'double', 'double[]', 'float', 'float[]', 'int', 'int[]', 'LocalDate', 'LocalDateTime', 'LocalTime', 'long', 'long[]', 'Object', 'Object[]', 'String', 'ZonedDateTime']#
Type of the measure members.
- Return type
Literal
[‘boolean’, ‘double’, ‘double[]’, ‘float’, ‘float[]’, ‘int’, ‘int[]’, ‘LocalDate’, ‘LocalDateTime’, ‘LocalTime’, ‘long’, ‘long[]’, ‘Object’, ‘Object[]’, ‘String’, ‘ZonedDateTime’]
- property description: Optional[str]#
Description of the measure.
Example
>>> df = pd.DataFrame( ... columns=["Product", "Price"], ... data=[ ... ("phone", 560), ... ("headset", 80), ... ("watch", 250), ... ], ... ) >>> table = session.read_pandas( ... df, keys=["Product"], table_name="Description example" ... ) >>> cube = session.create_cube(table) >>> m = cube.measures >>> print(m["Price.SUM"].description) None >>> m["Price.SUM"].description = "The sum of the price" >>> m["Price.SUM"].description 'The sum of the price' >>> del m["Price.SUM"].description >>> print(m["Price.SUM"].description) None
- property folder: Optional[str]#
Folder of the measure.
Folders can be used to group measures in the Data model UI component.
Example
>>> df = pd.DataFrame( ... columns=["Product", "Price"], ... data=[ ... ("phone", 600.0), ... ("headset", 80.0), ... ("watch", 250.0), ... ], ... ) >>> table = session.read_pandas( ... df, keys=["Product"], table_name="Folder example" ... ) >>> cube = session.create_cube(table) >>> m = cube.measures >>> print(m["Price.SUM"].folder) None >>> m["Price.SUM"].folder = "Prices" >>> m["Price.SUM"].folder 'Prices' >>> del m["Price.SUM"].folder >>> print(m["Price.SUM"].folder) None
- property formatter: Optional[str]#
Formatter of the measure.
Note
The formatter only impacts how the measure is displayed, derived measures will still be computed from unformatted value. To round a measure, use
atoti.math.round()
instead.Example
>>> df = pd.DataFrame( ... columns=["Product", "Price", "Quantity"], ... data=[ ... ("phone", 559.99, 2), ... ("headset", 79.99, 4), ... ("watch", 249.99, 3), ... ], ... ) >>> table = session.read_pandas( ... df, keys=["Product"], table_name="Formatter example" ... ) >>> cube = session.create_cube(table) >>> h, l, m = cube.hierarchies, cube.levels, cube.measures >>> m["contributors.COUNT"].formatter 'INT[#,###]' >>> m["contributors.COUNT"].formatter = "INT[count: #,###]" ... >>> m["contributors.COUNT"].formatter 'INT[count: #,###]' >>> m["Price.SUM"].formatter 'DOUBLE[#,###.00]' >>> m["Price.SUM"].formatter = "DOUBLE[$#,##0.00]" # Add $ symbol >>> m["Ratio of sales"] = m["Price.SUM"] / tt.total( ... m["Price.SUM"], h["Product"] ... ) >>> m["Ratio of sales"].formatter 'DOUBLE[#,###.00]' >>> m["Ratio of sales"].formatter = "DOUBLE[0.00%]" # Percentage >>> m["Turnover in dollars"] = tt.agg.sum( ... table["Price"] * table["Quantity"], ... ) >>> m["Turnover in dollars"].formatter 'DOUBLE[#,###.00]' >>> m["Turnover in dollars"].formatter = "DOUBLE[#,###]" # Without decimals >>> cube.query( ... m["contributors.COUNT"], ... m["Price.SUM"], ... m["Ratio of sales"], ... m["Turnover in dollars"], ... levels=[l["Product"]], ... ) contributors.COUNT Price.SUM Ratio of sales Turnover in dollars Product headset count: 1 $79.99 8.99% 320 phone count: 1 $559.99 62.92% 1,120 watch count: 1 $249.99 28.09% 750
The spec for the pattern between the
DATE
orDOUBLE
’s brackets is the one from Microsoft Analysis Services.There is an extra formatter for array measures:
ARRAY['|';1:3]
where|
is the separator used to join the elements of the1:3
slice.
- isnull()#
Return a measure evaluating to
True
if the measure isNone
andFalse
otherwise.Use ~measure.isnull() for the opposite behavior.
Example
>>> df = pd.DataFrame( ... columns=["Country", "City", "Price"], ... data=[ ... ("France", "Paris", 200.0), ... ("Germany", "Berlin", None), ... ], ... ) >>> table = session.read_pandas(df, table_name="isnull example") >>> cube = session.create_cube(table) >>> l, m = cube.levels, cube.measures >>> m["Price.isnull"] = m["Price.SUM"].isnull() >>> m["Price.notnull"] = ~m["Price.SUM"].isnull() >>> cube.query( ... m["Price.isnull"], ... m["Price.notnull"], ... levels=[l["Country"]], ... ) Price.isnull Price.notnull Country France False True Germany True False
- property visible: bool#
Whether the measure is visible or not.
Example
>>> df = pd.DataFrame( ... columns=["Product", "Price"], ... data=[ ... ("phone", 560), ... ("headset", 80), ... ("watch", 250), ... ], ... ) >>> table = session.read_pandas( ... df, keys=["Product"], table_name="Visible example" ... ) >>> cube = session.create_cube(table) >>> m = cube.measures >>> m["Price.SUM"].visible True >>> m["Price.SUM"].visible = False >>> m["Price.SUM"].visible False >>> m["contributors.COUNT"].visible True >>> m["contributors.COUNT"].visible = False >>> m["contributors.COUNT"].visible False
- Return type