atoti.scope.origin module#
- atoti.scope.origin(*levels)#
Create an aggregation scope with an arbitrary number of levels.
The passed levels define a boundary above and under which the aggregation is performed differently. When those levels are not expressed in a query, the measure will drill down until finding the value for all members of these levels, and then aggregate those values using the user-defined aggregation function. This allows to compute measures that show the yearly mean when looking at the grand total, but the sum of each month’s value when looking at each year individually.
- Parameters
levels (
Level
) – The levels defining the dynamic aggregation domain.
Example
>>> df = pd.DataFrame( ... columns=["Year", "Month", "Day", "Quantity"], ... data=[ ... (2019, 7, 1, 15), ... (2019, 7, 2, 20), ... (2019, 7, 3, 30), ... (2019, 6, 1, 25), ... (2019, 6, 2, 15), ... (2018, 7, 1, 5), ... (2018, 7, 2, 10), ... (2018, 6, 1, 15), ... (2018, 6, 2, 5), ... ], ... ) >>> table = session.read_pandas(df, table_name="Origin") >>> cube = session.create_cube(table, mode="manual") >>> h, l, m = cube.hierarchies, cube.levels, cube.measures >>> h["Date"] = [table["Year"], table["Month"], table["Day"]] >>> m["Quantity.SUM"] = tt.agg.sum(table["Quantity"]) >>> m["Average of monthly quantities"] = tt.agg.mean( ... m["Quantity.SUM"], scope=tt.scope.origin(l["Month"]) ... ) >>> cube.query( ... m["Quantity.SUM"], ... m["Average of monthly quantities"], ... levels=[l["Day"]], ... include_totals=True, ... ) Quantity.SUM Average of monthly quantities Year Month Day Total 140 35.00 2018 35 17.50 6 20 20.00 1 15 15.00 2 5 5.00 7 15 15.00 1 5 5.00 2 10 10.00 2019 105 52.50 6 40 40.00 1 25 25.00 2 15 15.00 7 65 65.00 1 15 15.00 2 20 20.00 3 30 30.00
- Return type