atoti.scope.siblings module¶
- atoti.scope.siblings(hierarchy, *, exclude_self=False)¶
Create a “siblings” aggregation scope.
In a siblings scope, the value for the member of a given level in the hierarchy is computed by taking the contribution of all of the members on the same level (its siblings).
A siblings aggregation is an appropriate tool for operations such as marginal aggregations (marginal VaR, marginal mean) for non-linear aggregation functions.
- Parameters
Example
>>> df = pd.DataFrame( ... columns=["Year", "Month", "Day", "Quantity"], ... data=[ ... (2019, 7, 1, 15), ... (2019, 7, 2, 20), ... (2019, 7, 3, 30), ... (2019, 6, 1, 25), ... (2019, 6, 2, 15), ... (2018, 7, 1, 5), ... (2018, 7, 2, 10), ... (2018, 6, 1, 15), ... (2018, 6, 2, 5), ... ], ... ) >>> table = session.read_pandas(df, table_name="Siblings") >>> cube = session.create_cube(table, mode="manual") >>> h, l, m = cube.hierarchies, cube.levels, cube.measures >>> h["Date"] = [table["Year"], table["Month"], table["Day"]] >>> m["Quantity.SUM"] = tt.agg.sum(table["Quantity"]) >>> m["Siblings quantity"] = tt.agg.sum( ... m["Quantity.SUM"], scope=tt.scope.siblings(h["Date"]) ... ) >>> m["Siblings quantity excluding self"] = tt.agg.sum( ... m["Quantity.SUM"], scope=tt.scope.siblings(h["Date"], exclude_self=True) ... ) >>> cube.query( ... m["Quantity.SUM"], ... m["Siblings quantity"], ... m["Siblings quantity excluding self"], ... levels=[l["Day"]], ... include_totals=True, ... ) Quantity.SUM Siblings quantity Siblings quantity excluding self Year Month Day Total 140 140 0 2018 35 140 105 6 20 35 15 1 15 20 5 2 5 20 15 7 15 35 20 1 5 15 10 2 10 15 5 2019 105 140 35 6 40 105 65 1 25 40 15 2 15 40 25 7 65 105 40 1 15 65 50 2 20 65 45 3 30 65 35
- Return type