atoti_query.query_session module¶
- class atoti_query.QuerySession¶
Used to query a remote atoti session (or a classic ActivePivot >= 5.7 server).
Note
Query sessions are immutable: the structure of their underlying cubes is not expected to change.
- __init__(url, *, auth=None, certificate_authority=None, client_certificate=None, name=None, **kwargs)¶
Create a QuerySession.
- Parameters
url (
str
) – The base URL of the session. The endpointf"{url}/versions/rest"
is expected to exist.auth (
Optional
[Auth
]) – The authentication to use to access the session.certificate_authority (
Union
[str
,Path
,None
]) – Path to the custom certificate authority file to use to verify the HTTPS connection. Required when the session has been configured with a certificate that is not signed by some trusted public certificate authority.client_certificate (
Optional
[ClientCertificate
]) – The client certificate to authenticate against the session.
- property cubes: atoti_query.query_cubes.QueryCubes¶
Cubes of the session.
- Return type
- link(*, path='')¶
Display a link to this session.
Clicking on the link will open it in a new browser tab.
Note
This method requires the
atoti-jupyterlab
plugin.The extension will try to access the session through (in that order):
Jupyter Server Proxy if it is enabled.
f"{session_protocol}//{jupyter_server_hostname}:{session.port}"
foratoti.Session
andsession.url
foratoti_query.QuerySession
.
- Parameters
path (
str
) – The path to append to the session base URL. Defaults to the session home page.
Example
Pointing directly to an existing dashboard:
dashboard_id = "92i" session.link(path=f"#/dashboard/{dashboard_id}")
- Return type
- query_mdx(mdx, *, keep_totals=False, timeout=datetime.timedelta(seconds=30), mode='pretty', context={}, **kwargs)¶
Execute an MDX query and return its result as a pandas DataFrame.
- Parameters
mdx (
str
) – The MDXSELECT
query to execute. Regardless of the axes on which levels and measures appear in the MDX, the returned DataFrame will have all levels on rows and measures on columns.keep_totals (
bool
) – Whether the resulting DataFrame should contain, if they are present in the query result, the grand total and subtotals. Totals can be useful but they make the DataFrame harder to work with since its index will have some empty values.timeout (
Union
[int
,timedelta
]) – The amount of time the query execution can take before aborting it.mode (
Literal
[‘pretty’, ‘raw’]) –The query mode.
"pretty"
is best for queries returning small results:A
atoti_query.QueryResult
will be returned and its rows will be sorted according to the level order.
"raw"
is best for benchmarks or large exports:
A faster and more efficient endpoint reducing the data transfer from Java to Python will be used.
A classic
pandas.DataFrame
will be returned.include_totals="True"
will not be allowed.The Convert to Widget Below action provided by the
atoti-jupyterlab
plugin will not be available.
context (
Mapping
[str
,Any
]) – Context values to use when executing the query.
Example
>>> from datetime import date >>> df = pd.DataFrame( ... columns=["Country", "Date", "Price"], ... data=[ ... ("China", date(2020, 3, 3), 410.0), ... ("China", date(2020, 4, 4), 350.0), ... ("France", date(2020, 1, 1), 480.0), ... ("France", date(2020, 2, 2), 500.0), ... ("France", date(2020, 3, 3), 400.0), ... ("France", date(2020, 4, 4), 420.0), ... ("India", date(2020, 1, 1), 360.0), ... ("India", date(2020, 2, 2), 400.0), ... ("UK", date(2020, 2, 2), 960.0), ... ], ... ) >>> table = session.read_pandas( ... df, keys=["Country", "Date"], table_name="Prices" ... ) >>> cube = session.create_cube(table)
This MDX:
>>> mdx = ( ... "SELECT" ... " NON EMPTY Hierarchize(" ... " DrilldownLevel(" ... " [Prices].[Country].[ALL].[AllMember]" ... " )" ... " ) ON ROWS," ... " NON EMPTY Crossjoin(" ... " [Measures].[Price.SUM]," ... " Hierarchize(" ... " DrilldownLevel(" ... " [Prices].[Date].[ALL].[AllMember]" ... " )" ... " )" ... " ) ON COLUMNS" ... " FROM [Prices]" ... )
would display this pivot table:
Country
Price.sum
Total
2020-01-01
2020-02-02
2020-03-03
2020-04-04
Total
2,280.00
840.00
1,860.00
810.00
770.00
China
760.00
410.00
350.00
France
1,800.00
480.00
500.00
400.00
420.00
India
760.00
360.00
400.00
UK
960.00
960.00
but will return this DataFrame:
>>> session.query_mdx(mdx).sort_index() Price.SUM Date Country 2020-01-01 France 480.0 India 360.0 2020-02-02 France 500.0 India 400.0 UK 960.0 2020-03-03 China 410.0 France 400.0 2020-04-04 China 350.0 France 420.0
- Return type
- visualize(name=None)¶
Display an atoti widget to explore the session interactively.
Note
This method requires the
atoti-jupyterlab
plugin.The widget state will be stored in the cell metadata. This state should not have to be edited but, if desired, it can be found in JupyterLab by opening the “Notebook tools” sidebar and expanding the “Advanced Tools” section.