atoti.math package¶
Module contents¶
Measures can be combined with mathematical operators.
Several native Python operators are supported:
The classic
+
,-
and*
operators>>> df = pd.DataFrame( ... columns=["City", "A", "B", "C", "D"], ... data=[ ... ("Berlin", 15.0, 10.0, 10.1, 1.0), ... ("London", 24.0, 16.0, 20.5, 3.14), ... ("New York", -27.0, 15.0, 30.7, 10.0), ... ], ... ) >>> store = session.read_pandas(df, keys=["City"], store_name="Math") >>> cube = session.create_cube(store) >>> l, m = cube.levels, cube.measures >>> m["Sum"] = m["A.SUM"] + m["B.SUM"] >>> m["Substract"] = m["A.SUM"] - m["B.SUM"] >>> m["Multiply"] = m["A.SUM"] * m["B.SUM"] >>> cube.query( ... m["A.SUM"], ... m["B.SUM"], ... m["Sum"], ... m["Substract"], ... m["Multiply"], ... levels=l["City"], ... ) A.SUM B.SUM Sum Substract Multiply City Berlin 15.00 10.00 25.00 5.00 150.00 London 24.00 16.00 40.00 8.00 384.00 New York -27.00 15.00 -12.00 -42.00 -405.00The float division
/
and integer division//
>>> m["Float division"] = m["A.SUM"] / m["B.SUM"] >>> m["Int division"] = m["A.SUM"] // m["B.SUM"] >>> cube.query( ... m["A.SUM"], ... m["B.SUM"], ... m["Float division"], ... m["Int division"], ... levels=l["City"], ... ) A.SUM B.SUM Float division Int division City Berlin 15.00 10.00 1.50 1.00 London 24.00 16.00 1.50 1.00 New York -27.00 15.00 -1.80 -2.00The exponentiation
**
>>> m["a²"] = m["A.SUM"] ** 2 >>> cube.query(m["A.SUM"], m["a²"], levels=l["City"]) A.SUM a² City Berlin 15.00 225.00 London 24.00 576.00 New York -27.00 729.00The modulo
%
>>> m["Modulo"] = m["A.SUM"] % m["B.SUM"] >>> cube.query(m["A.SUM"], m["B.SUM"], m["Modulo"], levels=l["City"]) A.SUM B.SUM Modulo City Berlin 15.00 10.00 5.00 London 24.00 16.00 8.00 New York -27.00 15.00 3.00
-
atoti.math.
abs
(measure)¶ Return a measure equal to the absolute value of the passed measure.
Example
>>> m["|A|"] = tt.math.abs(m["A.SUM"]) >>> cube.query(m["A.SUM"], m["|A|"], levels=[l["City"]]) A.SUM |A| City Berlin 15.00 15.00 London 24.00 24.00 New York -27.00 27.00
- Return type
-
atoti.math.
ceil
(measure)¶ Return a measure equal to the smallest integer that is >= to the passed measure.
Example
>>> m["⌈C⌉"] = tt.math.ceil(m["C.SUM"]) >>> cube.query(m["C.SUM"], m["⌈C⌉"], levels=[l["City"]]) C.SUM ⌈C⌉ City Berlin 10.10 11 London 20.50 21 New York 30.70 31
- Return type
-
atoti.math.
cos
(measure)¶ Return a measure equal to the cosine of the passed measure in radians.
Example
>>> m["cos(D)"] = tt.math.cos(m["D.SUM"]) >>> cube.query(m["D.SUM"], m["cos(D)"], levels=[l["City"]]) D.SUM cos(D) City Berlin 1.00 .54 London 3.14 -1.00 New York 10.00 -.84
- Return type
-
atoti.math.
erf
(measure)¶ Return the error function of the input measure.
This can be used to compute traditional statistical measures such as the cumulative standard normal distribution.
For more information read:
Python’s built-in
math.erf()
Example
>>> m["erf"] = tt.math.erf(m["D.SUM"]) >>> m["erf"].formatter = "DOUBLE[#,##0.000000]" >>> cube.query(m["D.SUM"], m["erf"], levels=[l["City"]]) D.SUM erf City Berlin 1.00 0.842701 London 3.14 0.999991 New York 10.00 1.000000
- Return type
-
atoti.math.
erfc
(measure)¶ Return the complementary error function of the input measure.
This is the complementary of
atoti.math.erf()
. It is defined as1.0 - erf
. It can be used for large values of x where a subtraction from one would cause a loss of significance.Example
>>> m["erfc"] = tt.math.erfc(m["D.SUM"]) >>> m["1-erf"] = 1 - tt.math.erf(m["D.SUM"]) >>> m["erfc"].formatter = "DOUBLE[#.00E]" >>> m["1-erf"].formatter = "DOUBLE[#.00E]" >>> cube.query(m["D.SUM"], m["erfc"], m["1-erf"], levels=[l["City"]]) D.SUM erfc 1-erf City Berlin 1.00 0.15729920705028488 0.15729920705028488 London 3.14 8.969565553264981E-6 8.9695655532962E-6 New York 10.00 2.0884875837625685E-45 0.0
- Return type
-
atoti.math.
exp
(measure)¶ Return a measure equal to the exponential value of the passed measure.
Example
>>> m["exp(D)"] = tt.math.exp(m["D.SUM"]) >>> cube.query(m["D.SUM"], m["exp(D)"], levels=[l["City"]]) D.SUM exp(D) City Berlin 1.00 2.72 London 3.14 23.10 New York 10.00 22,026.47
- Return type
-
atoti.math.
floor
(measure)¶ Return a measure equal to the largest integer <= to the passed measure.
Example
>>> m["⌊C⌋"] = tt.math.floor(m["C.SUM"]) >>> cube.query(m["C.SUM"], m["⌊C⌋"], levels=[l["City"]]) C.SUM ⌊C⌋ City Berlin 10.10 10 London 20.50 20 New York 30.70 30
- Return type
-
atoti.math.
log
(measure)¶ Return a measure equal to the natural logarithm (base e) of the passed measure.
Example
>>> m["log(D)"] = tt.math.log(m["D.SUM"]) >>> cube.query(m["D.SUM"], m["log(D)"], levels=[l["City"]]) D.SUM log(D) City Berlin 1.00 .00 London 3.14 1.14 New York 10.00 2.30
- Return type
-
atoti.math.
log10
(measure)¶ Return a measure equal to the base 10 logarithm of the passed measure.
Example
>>> m["log10(D)"] = tt.math.log10(m["D.SUM"]) >>> cube.query(m["D.SUM"], m["log10(D)"], levels=[l["City"]]) D.SUM log10(D) City Berlin 1.00 .00 London 3.14 .50 New York 10.00 1.00
- Return type
-
atoti.math.
max
(*measures)¶ Return a measure equal to the maximum of the passed arguments.
Example
>>> m["max"] = tt.math.max(m["A.SUM"], m["B.SUM"]) >>> cube.query(m["A.SUM"], m["B.SUM"], m["max"], levels=[l["City"]]) A.SUM B.SUM max City Berlin 15.00 10.00 15.00 London 24.00 16.00 24.00 New York -27.00 15.00 15.00
- Return type
-
atoti.math.
min
(*measures)¶ Return a measure equal to the minimum of the passed arguments.
Example
>>> m["min"] = tt.math.min(m["A.SUM"], m["B.SUM"]) >>> cube.query(m["A.SUM"], m["B.SUM"], m["min"], levels=[l["City"]]) A.SUM B.SUM min City Berlin 15.00 10.00 10.00 London 24.00 16.00 16.00 New York -27.00 15.00 -27.00
- Return type
-
atoti.math.
round
(measure)¶ Return a measure equal to the closest integer to the passed measure.
Example
>>> m["round(C)"] = tt.math.round(m["C.SUM"]) >>> cube.query(m["C.SUM"], m["round(C)"], levels=[l["City"]]) C.SUM round(C) City Berlin 10.10 10 London 20.50 21 New York 30.70 31
- Return type
-
atoti.math.
sin
(measure)¶ Return a measure equal to the sine of the passed measure in radians.
Example
>>> m["sin(D)"] = tt.math.sin(m["D.SUM"]) >>> cube.query(m["D.SUM"], m["sin(D)"], levels=[l["City"]]) D.SUM sin(D) City Berlin 1.00 .84 London 3.14 .00 New York 10.00 -.54
- Return type
-
atoti.math.
sqrt
(measure)¶ Return a measure equal to the square root of the passed measure.
Example
>>> m["√B"] = tt.math.sqrt(m["B.SUM"]) >>> cube.query(m["B.SUM"], m["√B"], levels=[l["City"]]) B.SUM √B City Berlin 10.00 3.16 London 16.00 4.00 New York 15.00 3.87
- Return type