Hierarchies¶
Cubes are structured in dimensions, hierarchies and levels.
[1]:
import atoti as tt
session = tt.create_session()
store = session.read_csv("data/example.csv", keys=["ID"], store_name="First Store")
cube = session.create_cube(store, "FirstCube")
Evaluating cube.hierarchies
will display the structure of the cube:
[2]:
lvl = cube.levels
h = cube.hierarchies
h
[2]:
- Dimensions
- Hierarchies
- City
- City
- Color
- Color
- Continent
- Continent
- Country
- Country
- Date
- Date
- ID
- ID
- City
- Hierarchies
Change dimension name of the hierarchy¶
A dimension can be seen as a folder of hierarchies. By default, all the hiearchies are put in the same dimension called Hierarchies
.
[3]:
h["Color"].dimension = "Physical attribute"
h
[3]:
- Dimensions
- Hierarchies
- City
- City
- Continent
- Continent
- Country
- Country
- Date
- Date
- ID
- ID
- City
- Physical attribute
- Color
- Color
- Color
- Hierarchies
Delete a hierarchy¶
Any hierarchy can be deleted using del
[4]:
del h["Date"]
h
[4]:
- Dimensions
- Hierarchies
- City
- City
- Continent
- Continent
- Country
- Country
- ID
- ID
- City
- Physical attribute
- Color
- Color
- Color
- Hierarchies
Slicing or not¶
A slicing hierarchy will not aggregate the data on all its members. By default the hierarchies are not slicing.
[5]:
h["Color"].slicing = True
[6]:
h["Color"].slicing = False
Multi-level hierarchies¶
Levels can be grouped into a single hierarchy:
[7]:
h["Geography"] = [lvl["Continent"], lvl["Country"], lvl["City"]]
h
[7]:
- Dimensions
- Hierarchies
- City
- City
- Continent
- Continent
- Country
- Country
- Geography
- Continent
- Country
- City
- ID
- ID
- City
- Physical attribute
- Color
- Color
- Color
- Hierarchies
If several levels have the same name, you will need to specify the hierarchy to access it.
[8]:
geoContinent = lvl[("Geography", "Continent")]
geoContinent
[8]:
Level(_name='Continent', _column_name='Continent', _data_type='string', _hierarchy=Hierarchy(_name='Geography', _levels={'Continent': ..., 'Country': Level(_name='Country', _column_name='Country', _data_type='string', _hierarchy=..., _comparator=None), 'City': Level(_name='City', _column_name='City', _data_type='string', _hierarchy=..., _comparator=None)}, _dimension='Hierarchies', _slicing=False), _comparator=None)
[9]:
m = cube.measures
cube.query(m["Quantity.SUM"], levels=[lvl[("Geography", "Continent")]])
[9]:
Quantity.SUM | |
---|---|
Continent | |
Asia | 9700.0 |
Europe | 13000.0 |
If you are in this configuration you can do a per using the level object
[10]:
m["Average per country"] = tt.agg.avg(
m["Quantity.SUM"], scope=tt.scope.origin(lvl[("Country", "Country")]),
)
cube.query(m["Average per country"], levels=[lvl[("Country", "Country")]])
[10]:
Average per country | |
---|---|
Country | |
China | 6000.0 |
France | 7500.0 |
India | 3700.0 |
UK | 5500.0 |
[11]:
lvl["Color"]
[11]:
Level(_name='Color', _column_name='Color', _data_type='string', _hierarchy=Hierarchy(_name='Color', _levels={'Color': ...}, _dimension='Physical attribute', _slicing=False), _comparator=None)
Level comparators¶
Levels member are ordered when they are displayed using a comparator.
ASC
is the default comparator if None is specify, it is the natural ascendant order.
DESC
is the opposite of ASC
: the descendant natural order.
[12]:
lvl["ID"].comparator = tt.comparator.DESC
It is also possible to specify the first members of a level :
[13]:
lvl["Color"].comparator = tt.comparator.first_members(["green", "blue"])
Create level from numeric store column¶
Float columns are not converted to a level by default but it is possible to create a level from any store column
[14]:
store["Quantity"].name
[14]:
'Quantity'
[15]:
h["Quant"] = {"My Quantity": store["Quantity"]}
h
[15]:
- Dimensions
- Hierarchies
- City
- City
- Continent
- Continent
- Country
- Country
- Geography
- Continent
- Country
- City
- ID
- ID
- Quant
- My Quantity
- City
- Physical attribute
- Color
- Color
- Color
- Hierarchies
[16]:
cube.query(cube.measures["Price.SUM"], levels=[cube.levels["My Quantity"]])
[16]:
Price.SUM | |
---|---|
My Quantity | |
1000.0 | 500.0 |
1500.0 | 880.0 |
2000.0 | 810.0 |
2200.0 | 360.0 |
2500.0 | 500.0 |
3000.0 | 880.0 |
4000.0 | 350.0 |